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We present a report on ongoing activities on electron-cloud R&D for the MI upgrade. These results
update and extend those presented in Refs. 1, 2. In this report we have significantly expanded the
parameter range explored in bunch intensity Nb, RMS bunch length σz and peak secondary emission
yield (SEY) δmax, but we have constrained our simulations to a field-free region. We describe the
threshold behaviors in all of the above three parameters. For δmax ≥ 1.5 we find that, even for
Nb = 1 × 1011, the electron cloud density, when averaged over the entire chamber, exceeds the
beam neutralization level, but remains significantly below the local neutralization level (ie., when
the electron density is computed in the neighborhood of the beam). This “excess” of electrons is
accounted for by narrow regions of high concentration of electrons very close to the chamber surface,
especially at the top and bottom of the chamber, akin to virtual cathodes. These virtual cathodes
are kept in equilibrium, on average, by a competition between space-charge forces (including their
images) and secondary emission, a mechanism that shares some features with the space-charge
saturation of the current in a diode at high fields. For Nb = 3 × 1011 the electron cloud build-up
growth rate and saturation density have a strong dependence on σz as σz decreases below ∼ 0.4 m,
when the average electron-wall impact energy roughly reaches the energy Emax where δ peaks. We
also present improved results on emittance growth simulations of the beam obtained with the code
WARP/POSINST in quasi-static mode, in which the beam-(electron cloud) interaction is lumped
into Ns “stations” around the ring, where Ns = 1, 2, . . . , 9. The emittance shows a rapid growth
of ∼ 20% during the first ∼ 100 turns, followed by a much slower growth rate of ∼ 0.03%/turn.
Concerning the electron cloud detection technique using microwave transmission, we present an
improved dispersion relation for the TE mode of the microwaves, and a corresponding analytic
estimate of the phase shift.

I. ELECTRON CLOUD BUILD-UP.

A. Remarks on the simulations.

We have replaced the Poisson solver of the code
POSINST [3–6], used in the computation of the elec-
tron cloud space-charge forces, by a multigrid-type solver
that is much faster and more accurate than the old one.
We have carefully tested the new solver in stand-alone
mode, and we are confident that it gives correct (in-
deed, quite accurate) results. Owing to its inefficiency,
the old solver could realistically be used only for very
coarse grids, leading to intermittent problems at high Nb

and/or high δmax that sometimes crashed the code. For
MI simulations, the improved code yields results only a
few percent different from the old ones [1] for those cases
in which the above-mentioned problem did not material-
ize. For other cases, notably the simulation of an LHC

∗Work supported by the FNAL HINS R&D Effort and by the US
DOE under contract DE-AC02-05CH11231.
†Electronic address: mafurman@lbl.gov; URL: http://mafurman.
lbl.gov
‡Electronic address: kgsonnad@lbl.gov
§Electronic address: jlvay@lbl.gov

arc dipole, the improved code yields more benign results
[7] for the electron-cloud density and power deposition
than the old ones [8].

We have gone through the exercise of varying computa-
tional parameters (time step size, space-charge grid size,
and maximum number of macroparticles allowed) to es-
tablish the conditions necessary for adequate numerical
convergence. Parts of this exercise were carried out in
the context of the LHC arc dipole electron cloud buildup
simulations, and parts in the context of the MI simu-
lations described here. Although we have not carried
out the exercise for the complete range of values of the
physical parameter explored, we have concluded that the
space-charge grid for the MI needs to be 32× 32 cells or
denser to achieve reasonable numerical convergence for
most of the cases explored. In practice, we have used a
64×64 grid for all cases; owing to the efficiency of the al-
gorithm, this grid size does not lead to significantly more
CPU time than a 32 × 32 grid. Fig. 1 shows a 64 × 64
grid superimposed on the MI chamber cross-section. We
have also found that the average number of macropar-
ticles needs to be not less than ∼ 5 − 10 per grid cell
when space-charge forces are important in order for the
results to be smooth, a criterion we have adopted. Con-
cerning the integration time step ∆t, we have found that
the cases with δmax ≥ 1.5 require smaller time steps, as
described below.
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B. Assumptions on the SEY.

In this article we have also restricted our focus to only
one model for the SEY, namely model “K” used in Ref. 1.
This model was obtained from fits to measurements for
stainless steel [5, 6], which originally showed δmax ' 2 for
the particular sample analyzed. Since we are interested
here in exploring the sensitivity to δmax, we have simply
scaled the curve δ(E0) by a constant factor, where E0

is the incident electron energy. In this way the energy
Emax at which δ(E0) peaks, δmax ≡ δ(Emax), remains
unchanged, while the 0-energy value of the SEY, δ(0),
scales linearly with δmax. Fig. 2 shows the SEY curve for
the case δmax = 1.7 and Emax = 293 eV.

While our simple scaling prescription does not quite
correspond to the physical process of conditioning, which
slightly shifts Emax and does not maintain the propor-
tionality δ(0) ∝ δmax, it allows us to conveniently explore
parameter space over a broad range. We intend to carry
out more detailed and faithful simulations, including con-
ditioning effects, after at least a few benchmarks against
MI measurements.

C. Parameter range explored.

In all build-up simulations presented here we consider
only a field-free region of the MI at injection energy, Eb =
8.9 GeV. The three main parameters varied here are Nb,
σz, and δmax.

We have significantly expanded the range of parame-
ters explored relative to [1]. Specifically, in this report
we consider the following values for Nb, σz, and δmax:

• Nb = (0.6, 1, 1.5, 2, 3)× 1011

• σz = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75 m

• δmax = 1.1, 1.2, 1.3, 1.4, 1.5, 1.7

but not in all combinations. In addition, in all cases
studied, we have assumed a transverse RMS beam size
σtr = 5 mm, as in Ref. 1; however, we have tested the
sensitivity of the results for high δmax by also setting
σtr = 1 mm (σtr ≡ σx = σy). Other parameters used to
obtain the present results are the same as those listed in
Ref. 1, except that now we have:

1. used the new multigrid Poisson solver with a grid
of 64× 64 cells instead of the old solver with a grid
of 26× 10 cells;

2. used the correct injection beam energy Eb = 8.9
GeV instead of 8 GeV;

3. used 10 times more primary macroelectrons
per bunch passage than before (input parame-
ters macroionel=90, macroplel=10 rather than
macroionel=9, macroplel=1);

4. Set a limit of 20000 for the maximum number
of macroelectrons allowed in the simulation at
any given time instead of 2000 (input parameter
nexmax);

5. used typically only two booster batches (168
bunches) instead of 6 to save on CPU time (how-
ever, all average quantities shown in Figs. 3-12 were
computed in steady state, typically reached well
before the end of the 2nd batch). We have spot-
checked with six booster batches (504 bunches) in
a few marginal cases;

6. used much smaller integration time steps for the
higher values of δmax, namely 67 kicks per bunch
length and 122 kicks per inter-bunch gap instead of
11 and 9 for the other cases presented here (input
parameters nkicks and nsteps, respectively).

Table I summarizes the parameters used here, and de-
fines many other variables.

D. Bunch-length dependence.

As we made progress in our simulations and gradually
learned to adjust the numerical integration parameters,
we ended up with two sets of simulations:

1. Higher-δmax set: δmax = 1.3, 1.5 and 1.7, Nb =
1× 1011, and (Nk, Ng) = (67, 122).

2. Lower-δmax set: δmax = 1.1, 1.2, 1.3 and 1.4, Nb =
(6− 30)× 1010, (Nk, Ng) = (11, 9).

In both sets we varied σz but not for all possible combi-
nations of the other parameters.

1. Results for the higher-δmax set.

Build-up results for δmax = 1.3 or 1.7, and σz = 0.75
m or 0.1 m, are shown in Fig. 3, which shows the average
electron cloud line-charge density λe(t). A strong depen-
dence on σz is evident. For δmax = 1.3 and σz = 0.75 m
there is no significant electron cloud build-up (no mul-
tipacting mechanism), resulting in a low-density satura-
tion. For the other cases there is a clear exponential
growth of the electron density during the first ∼ 1.5 µs,
with a growth rate and saturation level strongly depen-
dent on σz.

The two bottom plots of Fig. 3, corresponding to
δmax = 1.7, show that the average electron cloud density
exceeds the average beam neutralization level by factors
2–3 in steady state. This phenomenon can be examined
in more detail by looking at the time-averaged xy pro-
jection of the electron density, shown in Fig. 4. The four
plots here correspond directly to the same cases shown in
Fig. 3. It is clear that, when an exponential growth takes
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TABLE I: Assumed MI parameters for EC simulations.

Parameter Symbol (unit) Value

Ring and beam parameters

Ring circumference C (m) 3319.419

Beam energy Eb (GeV) 8.9

Relativistic beam factor γb 9.4855

Revolution period T0 (µs) 11.134

Beam pipe cross section · · · elliptical

Beam pipe semi-axes (a, b) (cm) (6.15,2.45)

Harmonic number h 588

RF wavelength λRF (m) 5.645270

No. bunches per beam · · · 168 or 504

Bunch spacing sb (m) 5.645270

Gap length · · · (buckets) 84

Bunch population Nb (0.6− 3)× 1011

RMS bunch length σz (m) 0.1–0.75

Longit. bunch profile · · · gaussian

Transverse bunch profile · · · gaussian

Average beta function β̄ (m) 25

Normalized tr. emittance (95%) εN (m-rad) 40π

RMS relative momentum spread σp/p 10−3

Transverse RMS bunch sizes (σx, σy) (mm) (1,1) or (5,5)

Primary e− parameters

Proton loss rate n′
pl (p/m) 1× 10−10

Proton-electron yield ηeff 100

Residual gas pressure P (nTorr) 20

Temperature T (K) 305

Ionization cross-section σi (Mbarns) 2

Proton-loss e− creation rate n′
e(pl) ((e/p)/m) 1× 10−8

Ionization e− creation rate n′
e(i) ((e/p)/m) 1.27× 10−7

Secondary e− parameters

Peak SEY δmax ≡ δ(Emax) 1.1–1.7

Energy at peak SEY Emax (eV) 293

SEY at 0 energy δ(0) 0.2438× δmax

Backscattered component at Emax δe(Emax) + δr(Emax) 0.406× δmax

Simulation parameters

Simulated section · · · field-free region

Length of simulated region L (m) 0.1

No. kicks/bunch Nk 11 or 67

(Full bunch length)/(RMS bunch length) Lb/σz 4

No. steps between bunches Ng 9 or 122

No. primary macroelectrons/bunch Me 100

Max. no. of macroelectrons allowed · · · 20000

Space-charge grid size · · · 64× 64

Time step size ∆t (ns) 0.02–1
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place (bottom 3 cases), the electron cloud density de-
velops small regions of high concentration very near the
chamber, predominantly at the top and bottom, while
the density near the beam remains at a much lower level.
Simulated digital movies in similar cases show that these
regions of high electron density near the walls are kept
stable by a competition between the space-charge forces
(including the image forces), and secondary emission. In
effect, a local minimum of the potential develops inside
the chamber near the walls, leading to these so-called
“virtual cathodes.” This mechanism is somewhat similar
to the space-charge saturation of the current in a diode
at high fields [9]. We are not certain that our simulation
yields quantitatively correct results for the virtual cath-
ode density, and we have not explored this issue in any
further detail. One reason we hesitate over the quantita-
tive validity of the virtual cathodes is that the SEY in our
secondary emission model is wholly independent of the
space-charge fields acting upon the surface. On the other
hand, basic physical arguments would seem to indicate a
suppression effect of the SEY which would diminish the
virtual cathode effect. We have not attempted to deter-
mine the magnitude of this suppression. It seems to us
that further investigation of this issue is desirable.

Fig. 5 shows the steady-state averages of the elec-
tron cloud volumetric density as a function of σz for
Nb = 1×1011 and δmax = 1.3, 1.5 and 1.7. As mentioned
above, the average electron cloud density exceeds the sat-
uration level for δmax ≥ 1.5 (top plot), but the electron
density within the 1σ beam ellipse, although somewhat
higher than the overall average, is nevertheless far below
the local neutralization level (bottom plot). In addition,
Fig. 5 shows that the overall electron density is fairly in-
sensitive to transverse beam size σtr, but the local density
near the beam does show some sensitivity.

Fig. 6 shows, for the same conditions as in the above
figures, the σz dependence of the electron flux at the wall,
average electron cloud energy, and average electron-wall
impact energy. It is apparent that all these quantities
increase as σz decreases, and none of them show a strong
sensitivity to σtr. It is worth noting that the average
electron-wall impact energy remains well below Emax =
293 eV even at the lowest value of σz explored, σz = 0.1
m.

Finally, Fig. 7 shows the detailed evolution of the elec-
tron cloud during the passage of two consecutive bunches,
for a total time interval of 35 ns, for Nb = 1 × 1011 and
δmax = 1.7. The specific time interval shown here, cen-
tered about t = 2 µs, is well within the steady-state
regime of the electron cloud build-up (see Fig. 3). It is
apparent that the overall electron cloud density does not
fluctuate much in time, but the local electron density
(within the 1σ beam ellipse) fluctuates quite strongly,
with strong sensitivity to σz. The electron density at
the bunch center is significantly higher for σz = 0.75 m
(d ' 3 × 1013 m−3) than for σz = 0.1 m (d ' 1 × 1013

m−3). This implies a larger neutralization tune shift for
the longer-bunch case, and higher potential for instabil-

ity, than for the shorter-bunch case.
The space-charge neutralization tune shift per unit

length, ∆ν/L, is given by [10]

∆ν/L =
rpβ̄d

2γb
(1)

where rp = 1.535×10−18 m is the classical proton radius.
Setting d = 1× 1013 m−3 we obtain

∆ν/L = 2× 10−5 m−1 (2)

To get a rough idea of the overall magnitude of ∆ν, we
may substitute C for L, yielding ∆ν ' 0.07 for the total
tune shift. For the σz = 0.75-m case, the estimate of ∆ν
is ∼3 times larger.

2. Results for the lower-δmax set.

Fig. 8 shows the build-up of the electron cloud for
δmax = 1.1 − 1.4, Nb = (6 − 30) × 1010, and σz = 0.75
m, specifically the average beam neutralization factor
χ(t) = λe(t)/λ̄b, where λ̄b = eNb/sb. It is apparent that
an exponential growth of the cloud does not occur unless
Nb or δmax are sufficiently high, implying a threshold be-
havior in either of these two variables.

If Nb is fixed at 3 × 1011, Fig. 9 shows the σz-
dependence of the average electron cloud density and the
1σ density. In contrast with the Nb = 1 × 1011 case
(Fig. 5), the average density now decreases when σz de-
creases. This qualitatively different behavior is almost
certainly due to the fact that, as σz decreases, the aver-
age electron-wall impact energy crosses Emax, hence the
effective SEY peaks in the mid-range of σz, as seen in
Fig. 10 (bottom).

E. Bunch-intensity dependence.

Figs. 11 and 12 summarize the dependence of various
quantities, averaged in steady state, on Nb for the lower-
δmax set. In these cases we have fixed σz = 0.75 m. As
already stated in Sec. I D 2, the electron cloud density and
flux at the wall exhibit a threshold behavior in Nb, and
the threshold value of Nb depends strongly on δmax. On
the other hand, the average electron energy, is a smooth
function of Nb, as it should be expected.

F. Transverse bunch-size dependence.

As explained inf Sec. I D 1, we have only tested the de-
pendence on σtr for a subset of the higher-δmax set, specif-
ically for δmax = 1.7 and Nb = 1 × 1011. For this case,
we have compared results for σtr = 5 mm vs. σtr = 1
mm. As seen in Figs. 5 and 6, the only average quantity
that shows some significant sensitivity to σtr is the 1σ
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electron density. Although a smaller σtr leads in princi-
ple to stronger beam-electron kicks, there are relatively
very few electrons (only those close to the edge of the
beam) that experience them, hence the quantities aver-
aged over the entire electron cloud are not expected to be
very sensitive to σtr for typical conditions. On the other
hand, local quantities (pertaining to electrons close to
the beam), are naturally expected to be sensitive to σtr.

II. ELECTRON CLOUD EFFECTS ON THE
BEAM.

We have implemented a quasi-static mode
(QSM) of operation in the 3D self-consistent code
WARP/POSINST. The QSM affords much faster sim-
ulations than the fully self-consistent 3D mode. In
the QSM approximation, a given bunch in the beam,
represented by macroprotons, interacts with an initially-
uniform 2D electron cloud at a number Ns of discrete
locations (called “stations”) around the ring. During
the passage of the bunch through the electron cloud, the
beam particles and the electrons move in response to
each other under their mutual influence. The electron
cloud at each station is refreshed before the next bunch
passage. After a bunch passes through a station, it is
transported to the next station by means of a lattice map
(a map capability has also been recently implemented
in WARP/POSINST), or by leap-frog integration of the
equations of motion for the protons. The intensity of the
lumped electron cloud is inversely proportional to Ns,
so the aggregate intensity around the ring corresponds
to the physical case. The physical limit corresponds to
Ns → ∞. We have benchmarked WARP/POSINST in
QSM against the CERN code HEADTAIL for the case
of the LHC beam, showing excellent agreement [11, 12].

Fig. 13 shows the beam emittance evolution for ∼600
turns, for Ns = 1, 2, . . . , 9, of a bunch with Nb = 3×1011

and σz = 0.75 m, and assuming an electron cloud density
of 1 × 1012 m−3. It is apparent that the vertical emit-
tance has nicely converged already at Ns = 3, but the
horizontal emittance seems to require Ns > 9 for sen-
sible convergence. We do not have an explanation for
this difference in the convergence rate. However, after
a rapid inital emittance growth (probably due to a mis-
match in the initial conditions of the bunch and electron
cloud distributions), the emittance growth rate stabilizes
to ∼ 0.03%/turn.

III. MICROWAVE PROPAGATION THROUGH
THE ELECTRON CLOUD.

A technique to measure the average electron cloud den-
sity in a section of a storage ring non-destructively, par-
asitically, and in real time, has been devised by Caspers
and Kroyer, and tested at the SPS [13–15]. The tech-
nique consists in injecting microwaves into the vacuum

chamber and detecting their phase shift and attenuation
a distance ∆L away. The electron cloud density can be
inferred from these measurements if a theoretical or sim-
ulation analysis is available for the phase shift and atten-
uation. For typical operating conditions, the beam itself
leads to a relatively small (and calculable) perturbation
on these quantities owing to the significantly different
frequency spectrum than the electron cloud.

We have computed an improved expression for the
phase shift expected in a uniform electron cloud. The
dispersion relation for the TE mode of an EM wave of
wavenumber k and angular frequency ω propagating in
a cylindrical pipe of radius R containing a plasma of fre-
quency ωp is given by [16]

ω2 − (ck)2 − ω2
p = ω2

c (3)

where ωc ≡ cα`n/R is the cutoff frequency, α`n being the
nth root of the derivative of the Bessel function of order
`, J ′

`(x). The phase shift over a distance ∆L arising from
the presence of the plasma is ∆φ = (kv−k)∆L where kv

is the wave number in vacuum under similar conditions.
Thus

∆φ =
[
(ω2 − ω2

c )1/2 − (ω2 − ω2
c − ω2

p)1/2
] ∆L

c
(4)

The plasma frequency ωp =
√

e2d/(ε0me) = c
√

4πred
is 56.4 MHz for an electron cloud density d = 1 × 1012

m−3 (here me and re are the mass and classical radius
of the electron, respectively). If we assume R = 5 cm
and a mode corresponding to (`, n) = (1, 2), we obtain
ωc = 18.3 GHz. In the approximation ω � ωp, which is
typical, the above reduces to

∆φ =
ω2

p ∆L

2c(ω2 − ω2
c )1/2

(5)

This expression reduces to that given by T. Kroyer and
F. Caspers [13–15] for wave propagation in the absence
of a pipe (ωc = 0).

IV. CONCLUSIONS AND FUTURE WORK.

We now have a better quantitative description of the
sensitivity of the electron cloud for field-free regions in
the MI to the three main parameters Nb, σz and δmax.
Threshold behaviors are observed in this 3D parameter
space. The determination of a “phase diagram” in this
space is possible from our current results, but smooth,
well-demarcated boundaries would require more, finer,
simulations. A natural criterion used to define the phase
diagram would be based upon the exponential growth
rate of the electron cloud build-up.

Recent measurements of the SEY of MI chamber sam-
ples indicate δmax ' 2 and Emax ' 350 eV [17]. In
our simulations we have so far constrained δmax not ex-
ceed 1.7, and we have fixed Emax = 293 eV. Even for
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δmax = 1.7 our electron cloud simulations indicate a
rather strong effect on the average density. It appears at
first sight that our simulations indicate a stronger elec-
tron cloud effect than what is observed at the MI. It
seems to us that a benchmarking exercise, in which our
simulations for the electron cloud buildup and electron
flux is methodically compared against in-situ measure-
ments at the MI, should have high priority. Such a bench-
mark would tell us which parameters need adjusting in
order to achieve faithful results and predictions. The pa-
rameters Emax and δ(0), which we have not yet exercised
independently, are likely to be relevant. Furthermore,
we do not yet have a good quantitative description of the
electron cloud effects on the beam, especially instabili-
ties, which would afford an ultimate benchmark against
observations.

The effect of the beam energy Eb on the electron cloud
is essentially indirect: given Nb, σx, σy and σz, the elec-
tron cloud is essentially determined without further ref-
erence to Eb. The only other way in which Eb enters is
through the bunch spacing in time and the longitudinal
field produced by the bunch, but such effects are weak
as long as the beam is sufficiently relativistic, which is
typically the case. On the other hand, the effcets from
the electron cloud on the beam are sensitive to Eb. For
example, the space-charge neutralization tune shift is ex-
plicitly proportional to E−1

b . Such dependence is typical
of conventional impedance effects.

Our results indicate strong sensitivities of global elec-
tron cloud quantities to Nb, σz and δmax but not to σtr.
Local quantities (ie., close to the beam center) are sensi-
tive to σtr. While these sensitivities can be understood
from basic physical considerations, there are unresolved
details such as:

• For Nb = 3 × 1011, why is it that the density and
e-wall flux peak at σz ∼ 0.4 m? The simple ex-
pectation is that this should happen at σz ∼ 0.25
m, since the average electron-wall impact energy
reaches a value = Emax at this value of σz.

• To what extent are the virtual cathodes described
in Sec. I D 1 real? The physical mechanism that
gives rise to them are well understood, but we are
uncertain as to the quantitative aspects. An in-
triguing question we would like to answer is the
extent to which the SEY is suppressed by space-
charge forces. Even a relatively small suppression
would probably lead to more benign electron cloud
effects in general, and to weaker virtual cathodes.

• Why do the simulations of the horizontal and ver-
tical emittance growth rates show a qualitative dif-
ference in convergence rate?

It is possible that the inherently 2D nature of the code
POSINST leads to stronger-than-real electron cloud ef-
fects, including the average electron density, especially

for field-free regions. In reality, the electrons would prob-
ably be pushed longitudinally by the space-charge forces,
presumably leading to a smaller density. Such forces are
absent in POSINST. For other regions, such as dipole
fields, the space-charge longitudinal forces are typically
ineffective against the B-field trapping mechanism, hence
the 2D approximation is easier to justify in these cases.
A simple code-to-code benchmark to test the degree of
validity of the 2D POSINST approximation would be to
carry out a 3D electron cloud build-up simulations with
WARP/POSINST using frozen (non-dynamical) beams,
as in POSINST. Such a simulation would require minimal
extra code development on WARP/POSINST.

Future activities we intend to carry out include:

1. Carry out further build-up simulations with param-
eters resembling as close as possible those relevant
to the MI measurement setup [18], and the SEY
measurements of chamber samples [17].

2. Extend our build-up simulations to dipole magnetic
fields to explore any potential qualitatively differ-
ent behaviors (which we do not expect, but which
should be checked).

3. Continue and augment WARP/POSINST simula-
tions to study the effects of the electron cloud on
the beam, with special attention to potential insta-
bilities.

4. Apply WARP/POSINST to simulate the electron
cloud build-up in 3D with non-dynamical beams,
as a way to benchmark the 2D calculations carried
out with POSINST.

5. Continue to refine the analysis of the microwave
transmission through the electron cloud, eg., by
taking into account effects from electron cloud
temperature and non-uniformities, presence of the
beam, etc., to the extent that is analytically possi-
ble.

6. Evaluate the application of an EM code such
as VORPAL to simulate microwave transmission
through the electron cloud for more realistic condi-
tions.

7. If possible, participate, or at least be in the loop, in
forthcoming measurements of the microwave trans-
mission technique at PEP-II.
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FIG. 1: MI chamber cross-section and the grid used to compute the space-charge forces. The grid is of size 64 × 64 cells, so
that the number of cells within the elliptical chamber is ' 3216.
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FIG. 2: Sample SEY curve used in the simulations. This particular case has a peak value δ(Emax) ≡ δmax = 1.7 and
δ(0) = 0.414. For other values of δmax, we simply scale this curve by a constant factor. The location of the peak, Emax = 293
eV, is unchanged by this scaling. Obtained by scaling a fit to measured data for stainless steel [5, 6].
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FIG. 3: Build-up of the average electron-cloud line density for Nb = 1× 1011 for a beam consisting of two booster batches (168
bunches). The top two cases correspond to δmax = 1.3, while the bottom two to δmax = 1.7. For each value of δmax we consider
σz either 75 cm or 10 cm. The strong dependence of the growth time and the saturation level on σz is evident. The beam
neutralization level (“neutr.”) of the electron-cloud line density is given by λ̄b = eNb/sb = 2.84 nC/m. Although the average
electron-cloud density exceeds the beam neutralization level for δmax = 1.7, the local density near the beam is significantly
below neutralization (see Fig. 5). In these cases the electron distribution develops small regions of high density at the top and
bottom of the chamber (see Fig. 4 for the xy projection of the density for the cases above).
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FIG. 4: Time-average of the xy projection of the electron-cloud density. For the top two plots δmax was assumed to be 1.3,
while the RMS bunch length σz was either 75 cm or 10 cm. Bottom two plots: same, except δmax = 1.7. Bunch intensity was
Nb = 1 × 1011 in all cases. The average over time was taken over one full revolution of the MI (T0 = 11.1 µs), but the beam
consisted of only two booster batches (168 bunches), lasting only ∼ 3.2 µs. For all cases except the top, the electron-cloud
builds up exponentially in time (see Fig. 3), reaching a saturation within ∼1–2 µs. In these cases regions of high local electron
density develop at the top and bottom of the chamber.
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FIG. 5: Bunch-length dependence of the average steady-state density of the electron cloud for Nb = 1 × 1011, for peak SEY
δmax = 1.3, 1.5 or 1.7. Top: overall density in the chamber. Bottom: density within the 1σ cylinder about the beam center.
In the top case, the beam neutralization level is given by d = Nb/(πabsb) = 3.745 × 1012 m−3, while in the bottom case the
local beam neutralization density is d = Nb/(πσxσysb) = 2.255× 1014 m−3 (assuming σx = σy = 5 mm). These results imply
that, while the overall electron density may exceed the beam neutralization density by factors of 2–3 for high δmax, the local
electron density (near the beam) is an order of magnitude below the local neutralization level. For δmax = 1.3 and 1.5, the
RMS transverse beam size σtr is 5 mm, while for δmax = 1.7, σtr = 5 mm or 1 mm (σtr ≡ σx = σy). The dependence on σtr is
strong for the 1σ density, but weak for the overall density.
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FIG. 7: Average electron-cloud density for Nb = 1 × 1011 and δmax = 1.7. Top: σz = 0.75 m. Bottom: σz = 0.1 m.
These plots show the detail of the time evolution of the density during the passage of two consecutive bunches during a total
time interval of 35 ns, after steady state has been reached (see the two bottom plots in Fig. 3). The 1σ density exhibits
much stronger fluctuations than the overall density because the bunch strongly pulls in the local electrons, leading to a large
electron density gradient along the bunch length. This effect is stronger for the 0.75-m-long bunch than for the 0.1-m-long
bunch, implying a larger space-charge neutralization tune shift in the former case than in the latter, and a higher potential for
electron-cloud-induced instability.
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FIG. 8: Build up of the average electron-cloud neutralization factor χ(t) for δmax = 1.1 − 1.4 and Nb = (6 − 30) × 1010. χ(t)
is defined as λe(t)/λ̄b, where λe(t) is the instantaneous electron-cloud line charge density and λ̄b = eNb/sb. The beam consists
of 2 booster batches (168 bunches). Each trace corresponds to a given bunch intensity Nb, as indicated, and each graphic
corresponds to a given peak value δmax of the SEY, as shown in the box. For all cases, the RMS bunch length was assumed
to be σz = 0.75 m and the RMS transverse size to be σtr = 5 mm. The exponential growth of the cloud density is clearly
exhibited for sufficiently high Nb or δmax.
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FIG. 9: Bunch-length dependence of the average steady-state density of the electron cloud for Nb = 3 × 1011, for peak SEY
δmax = 1.3 and 1.4. Top: overall density in the chamber. Bottom: density within the 1σ cylinder about the beam center. In
the top case, the beam neutralization level is given by d = Nb/(πabsb) = 1.1235× 1013 m−3, while in the bottom case the local
beam neutralization density is d = Nb/(πσxσysb) = 6.765× 1014 m−3 (assuming σx = σy = 5 mm).
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FIG. 11: Bunch-intensity dependence of the average steady-state density of the electron-cloud for δmax = 1.1 − 1.4. For all
cases, the RMS bunch length was assumed to be σz = 0.75 m and the RMS transverse size to be σtr = 5 mm. The purple
dotted line in the top plot indicates the average beam neutralization level, given by Nb/(πabsb). In the case of the 1σ density,
the local beam neutralization level, Nb/(πσxσysb), is off-scale, being 1.353 × 1014 m−3 for the lowest value of Nb considered,
namely Nb = 6× 1010.
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FIG. 13: Time evolution of the beam emittances due to the electron cloud obtained with the code WARP/POSINST in quasi-
static mode. The electron cloud was assumed to have an average density of 1 × 1012 m−3, while the bunch was assumed
to have Nb = 3 × 1011 and σz = 0.75 m. Any given trace corresponds to the approximation in which the beam-(electron
cloud) interaction is lumped at Ns = 1, 2, . . . , 9 points around the ring, as labeled (these locations of beam-(electron cloud)
interaction are called “stations”). The lattice was assumed to be linear with tunes (νx, νy) = (26.425, 25.415) and average betas
(β̄x, β̄y) = (20.0, 20.8) m. The beam was represented by 3×105 macroprotons, and the electron cloud at each station by 1×105

macroelectrons.


